Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures

نویسندگان

  • Geonhui Gwak
  • Johan Ko
  • Hyunchul Ju
چکیده

In this investigation, a parametric study was performed using the transient cold-start model presented in our previous paper, in which the ice melting process and additional constitutive relations were newly included for transient cold-start simulations of polymer electrolyte fuel cells (PEFCs) from a sub-zero temperature (-20°C) to a normal operating temperature (80°C). The focus is placed on exploring the transient cold-start behavior of a PEFC for different porous properties of the catalyst layer (CL) and gas diffusion layer (GDL). This work elucidates the detailed effects of these properties on key cold-start phenomena such as ice freezing/melting and membrane hydration/dehydration processes. In particular, the simulation results highlight that designing a cathode CL with a high ionomer fraction helps to retard the rate of ice growth whereas a high ionomer fraction in the anode CL is not effective to mitigate the anode dry-out and membrane dehydration issues during PEFC cold-start.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells

In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...

متن کامل

Characteristic Behavior of Polymer Electrolyte Fuel Cell Resistance during Cold Start

In this study, experimental constant-current cold starts were performed on a polymer electrolyte fuel cell from −10°C to characterize high-frequency resistance behavior, water motion, and ice accumulation before, during, and after cold start. A diagnostic method for rapid and repeatable cold starts was developed and verified. Cold-start performance is found to be optimized when cell resistance ...

متن کامل

Pii: S0079-6700(00)00032-0

This paper presents an overview of the synthesis, chemical and electrochemical properties, and polymer electrolyte fuel cell applications of new proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Due to their chemical stability, high degree of proton conductivity, and remarkable mechanical properties, per ̄uorinated polymer electrolytes such as Na®on, Aciplex, Flemion...

متن کامل

Study of flow and heat transfer characteristics in a periodic zigzag channel for cooling of polymer electrolyte fuel cells

In this study, a periodic zigzag channel with rectangular cross-section has been used in order to obtain a high-efficiency system for cooling a polymer electrolyte fuel cell. An appropriate function of fuel cells and enhancement of their lifetime require uniform temperature conditions of around 80°C. On the other hand, due to volume and weight constraints, a low-density compact heat exchanger i...

متن کامل

Prediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling

Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014